A Monotone Method for Fourth Order Periodic Boundary Value Problems and Periodic Solutions of Functional Differential Equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Monotone Method for Fourth Order Periodic Boundary Value Problems and Periodic Solutions of Functional Differential Equations

In this paper, we show that the monotone iterative technique yields two monotone sequences that converge uniformly to extremal solutions of fourth order periodic boundary value problems and periodic solutions of functional differential equations.

متن کامل

Periodic Boundary Value Problems for Second-Order Functional Differential Equations

Upper and lower solution method plays an important role in studying boundary value problems for nonlinear differential equations; see 1 and the references therein. Recently, many authors are devoted to extend its applications to boundary value problems of functional differential equations 2–5 . Suppose α is one upper solution or lower solution of periodic boundary value problems for second-orde...

متن کامل

Periodic solutions of fourth-order delay differential equation

In this paper the periodic solutions of fourth order delay differential equation of the form $ddddot{x}(t)+adddot{x}(t)+f(ddot{x}(t-tau(t)))+g(dot{x}(t-tau(t)))+h({x}(t-tau(t)))=p(t)$  is investigated. Some new positive periodic criteria are given.  

متن کامل

Upper and Lower Solutions Method for Fourth-order Periodic Boundary Value Problems

The purpose of this paper is to prove the existence of a solution of the following periodic boundary value problem ( u(t) = f(t, u(t), u′′(t)), t ∈ [0, 2π] u(0) = u(2π), u′(0) = u′(2π), u′′(0) = u′′(2π), u′′′(0) = u′′′(2π) in the presence of an upper solution β and a lower solution α with β ≤ α, where f(t, u, v) satisfies one side Lipschitz condition.

متن کامل

Multiple solutions of periodic boundary value problems for first order differential equations

Conditions sufficient to guarantee existence and uniqueness of solutions to multipoint boundary value problems for the first-order differential equation y' = h(t,y) are given when h fails to be Lipschitz along a solution of y' = h(t,y) and the initial-value problem thus has nonunique solutions. It is well known that the initial value problem for the first-order differential equation y' — h(t,y)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Methods and Applications of Analysis

سال: 2005

ISSN: 1073-2772,1945-0001

DOI: 10.4310/maa.2005.v12.n1.a2